에 오신 것을 환영합니다 XIAMEN TOB NEW ENERGY TECHNOLOGY Co., LTD..
  • 한국의
  • Russian
  • f
  • i
  • y
  • t
  • p
battery machine and materials solution

리튬 음극 재료

  • 니켈이 풍부한 양극 재 NCM 재료
    Oct 23 , 2020
    현재 고용량 에너지 밀도와 전력 밀도를 달성하는 것이 확장의 초점이되었습니다. 리튬 배터리대규모 에너지 저장 시스템에 적용. 따라서 배터리의 대용량 에너지 밀도 요구 사항을 충족하기 위해 전극 제조 공정에서 높은 부하 수준과 거친 캘린더 링 공정이 필요합니다. 하지만 전극 제조 공정은 전극의 전자 및 이온 수송을 조절하도록 고도로 최적화되어 있으며, 국소 이온 다양성 및 전자 전도도는 결국 심각한 반응 이질성을 유발하여 배터리의 안정성에 영향을 미칩니다. 특정 제조 조건 및 운영 환경에서이 이질적인 반응 동작은 강렬 해집니다. 또한 심각한 마이크로 구조 압연 과정에서 표면 입자의 붕괴는 장기적인 순환 과정에서 국부적 인 편차를 일으킬 수 있습니다. 동시에 니켈 기반 LiNixCoyMnzO2 ( NCM ), ...
    더 읽어보기
  • 리튬 배터리 양극 재료 준비
    Dec 09 , 2020
    첫 번째는 확인하고 굽는 것입니다. 배터리 재료 . 일반적으로 배터리 전도성 에이전트 120에서 구워야합니다 ℃ 8 시간 그만큼 PVDF 가루 해야 80 세에 구워지다 ℃ 8 시간 그만큼 음극 활물질 (LFP, NCM 등) 들어오는 상태와 프로세스에 따라재료 여부 구워서 건조시켜야합니다. 건조 후 (습식 공정) 혼합 PVDF 가루 과 NMP 용제 바인더 만들기 (접착제) 전극 용. PVDF 의 품질 바인더 (접착제) 배터리의 내부 저항과 전기적 성능에 매우 중요합니다. 바인더 혼합에 영향을 미치는 요인에는 온도와 교반 속도가 포함됩니다. 황변으로 인한 바인더의 온도가 높을수록 접착력에 영향을줍니다. 혼합 속도가 너무 높고 바인더가 깨지기 쉽습니다. 특정 속도는 분산 판의 크기에 따라 다릅니다. 일반적으로 분...
    더 읽어보기
  • 배터리 음극 재 준비
    Dec 16 , 2020
    리튬 배터리의 양극은 양극 활물질 , 전도성 에이전트 , 배터리 접합재 과 분산제 . 기존 양극 전극시스템은 물 혼합 공정입니다 (용매는 탈 이온수입니다), 따라서 유입되는 물질은 건조 할 필요가 없습니다. 이 프로세스 필요 : 탈 이온수의 전도도 ≤1us / cm. 작업장 온도 ≤40 ℃, 습도 : ≤25 % RH. 재료 확인 후 접착제 용액 준비 ( CMC 가루 및 물 구성) 먼저. 부어 흑연 분말 과 전도성 에이전트 ( 카본 블랙 , CNT , 그래 핀 등 ) 으로 그만큼 배터리 슬러리 믹스 어건조 용 혼합. 진공 상태가 아닌 것이 좋습니다. 펌핑됩니다. 순환 수 시작 (입자 압출 마찰은 심각한 열을 생성 중 건조 혼합) 15의 저속으로 ~ 20rpm, 스크래핑 재료는 15 분 간격으로 2 ~ 3 회 ...
    더 읽어보기
  • 배터리 전극 코팅 공정 공지
    Dec 25 , 2020
    그만큼 음극 전극 코팅 이다 음극 슬러리양극 집 전체 알루미늄 호일에 압출 코팅 또는 스프레이, 한쪽의 밀도는 20 ~ 40 mg / cm2. 코팅 오븐 온도 기존 4-8 섹션 (또는 더), 베이킹 온도의 각 섹션 95 ℃ ~ 120 ℃ 조정해야 할 실제 요구에 따라, 베이킹 균열 가로 균열 및 용매 현상을 피하기 위해 전사 코팅 롤러의 속도 비율은 1.1-1.2, 간격 위치 20-30um (피하십시오 후행으로 인한 극귀의 과도한 압축 및 배터리 사이클에서 리튬 추출) 및 코팅 수 ≤2000-3000ppm (재료 및 프로세스에 따라 특정 ). 음극 전극 코팅 작업장의 온도는 ≤30 ℃이고 습도는 ≤25 %입니다. 양극 전극 코팅 이다 양극 슬러리 양극 집 전체 구리 호일에 압출 코팅 또는 스프레이 단면 밀도...
    더 읽어보기
  • 원통형 리튬 배터리 셀을 케이스에 적재합니다
    Mar 05 , 2021
    하이 냄비 테스트 전압 200 ~ 500V 배터리 셀이에 넣기 전에 필요합니다. 배터리 스테인레스 스틸 케이스 (고전압 짧은 회로의 경우) 및 진공 처리 (배터리 셀을로드하기 전에 더 먼지를 제어하십시오). 우리는 가장 전문가를 제공 할 수 있습니다 리튬 배터리 셀 단락 회로 테스터 . . 습기, Burr 및 먼지는 특별한 강조가 필요한 리튬 배터리 제조의 세 가지 제어점입니다. 이전 프로세스가 완료되면 배터리 셀의 바닥에 하단 가스켓을 놓고 양극 탭을 구부리고 배터리 탭이 롤 코어의 핀홀을 향하게하고 있으며 마지막으로 강철 또는 알루미늄 케이스에 수직으로 삽입됩니다 ( 복용 모델 18650 외경을 사용하여 외경 ± 18mm + ± 71.5mm). 왜냐하면 때문에 배터리 전극 조각의 리바운드 값과 액체 침투...
    더 읽어보기
  • 파우치 셀 케이스용 알루미늄 라미네이트 필름
    Sep 02 , 2021
    리튬 배터리의 포장 방법은 사용하는 쉘 재질에 따라 다릅니다. 일반적으로 리튬 파우치 배터리만 사용합니다. 알루미늄 라미네이트 필름 및 열 밀봉. 금속 캔 배터리는 일반적으로 레이저 용접으로 밀봉됩니다. 알루미늄 라미네이트 필름 일반적으로 나일론 층, 알루미늄 층, PP 층의 3개의 층이 있습니다. 나일론 층은 알루미늄 라미네이트 필름의 외관을 보장하고 쉘의 손상을 줄이며 리튬 이온 배터리로 제조하기 전에 알루미늄 라미네이트 필름이 변형되지 않도록 하고 공기, 특히 산소가 배터리에 침투하는 것을 방지하고 내부 환경을 유지합니다. 배터리 셀의. 리튬 이온 배터리는 일반적으로 물을 무서워하므로 전극 시트의 수분 함량은 PPM 수준이되어야합니다. Al 층은 물 침투를 방지하는 기능을하는 금속 Al 층으로 구성됩니...
    더 읽어보기
  • 나트륨 이온 배터리와 리튬 이온 배터리의 차이점
    Dec 24 , 2021
    의 이론적 근거와 배터리 구조 나트륨 이온 배터리(Na 이온 배터리) 리튬 이온 배터리는 매우 유사합니다. 액체 나트륨 이온 배터리(고체 리튬 이온 배터리와 같이 연구 중임)는 양극, 음극, 집전체 , 전해질 및 배터리 분리기. 그 중 전해질과 분리막은 기본적으로 리튬 이온 배터리 시스템을 따릅니다. 알루미늄 호일은 집전체의 양극과 음극 모두에 사용할 수 있지만 구리박은 리튬 이온 배터리의 음극에 필요합니다(나트륨 이온은 양극에서 알루미늄 이온과 반응하지 않기 때문에). 이는 또한 전류 비용을 절감합니다. 수집기. 나트륨 이온과 리튬 이온의 특성 차이로 인해 나트륨 이온의 양극 및 음극 재료는 나트륨 이온 이동에 적합한 재료를 선택해야 하며 이는 나트륨 이온 배터리 기술의 핵심이기도 합니다. 현재 크게 3가...
    더 읽어보기
  • 리튬 이온 배터리 형성 과정
    Mar 21 , 2022
    배터리 제조 후, 내부 양극 및 음극 물질을 활성화하기 위해 일정한 충방전 방식을 통해, 배터리의 충방전 성능과 자가 방전, 저장 및 기타 종합적인 성능을 향상,이 과정을 호출합니다. 형성. 리튬 이온 배터리의 형성 과정은 매우 복잡한 과정,이며 배터리 성능에 영향을 미치는 중요한 과정이기도 합니다, li+가 처음 충전될 때, li+가 처음으로 흑연에 삽입되기 때문에, 전기화학 반응, 첫 번째 충전 과정에서 배터리.에서 발생, 탄소 음극과 전해질, 사이의 상 INTERFACE에 탄소 전극 표면을 덮는 얇은 부동태층이 필연적으로 SEI 필름( 고체 전해질 인터페이스). 형성 원리 tob NEW ENERGY는 512 채널 5V2A,5V3A, 또한 고사양 5V30A 등.과 같은 다양한 사양의 리튬 이온 배터리 성...
    더 읽어보기
  • 리튬이온 파우치 셀 가스 발생 요인
    Apr 15 , 2022
    강철 및 알루미늄 케이스(캔) 리튬 이온 배터리가 폭발적으로 큰 피해를 입었기 때문에, 현재, 주요 포장 재료인 알루미늄 적층 필름이 점차 주류.가 되었습니다. 배터리 케이스(캔) 이점 불리 스틸 캔 리튬 이온 배터리 우수한 물리적 안정성, 압력에 대한 강한 저항 큰 무게, 낮은 안전성, 2차 위험 알루미늄 캔 리튬 이온 배터리 경량, 안전성은 강철 캔 리튬 이온 배터리보다 약간 우수합니다. 높은 비용 및 2차 위험 알루미늄 적층 필름 파우치 셀 가벼운 품질, 저렴한 비용, 높은 안전성 팽창, 압력에 약한 저항 파우치 셀은 알루미늄 적층 필름으로 인해 팽창하기 쉬움, 팽창 가스 발생은 정상 가스 발생과 비정상 가스 발생으로 나눌 수 있습니다. 1. 일반 가스 발생 이는 전지 형성 과정,에서 가스 발생을 수반...
    더 읽어보기
  • 리튬 이온 배터리의 사이클링 성능에 영향을 미치는 요인은 무엇입니까?
    Aug 24 , 2022
    재료 재료 선택은 리튬 이온 배터리의 성능에 영향을 미치는 첫 번째 요소입니다. 사이클 성능이 좋지 않은 배터리 재료 를 선택하면 공정이 합리적이고 생산이 완벽하더라도 셀의 사이클을 보장할 수 없습니다. 그리고 더 좋은 재료를 사용하면 후속 생산 과정에서 약간의 문제가 있더라도 사이클 성능이 나쁘지 않을 수 있습니다. 물질적 관점에서 배터리의 사이클링 성능은 전해질과 일치할 때 사이클 성능이 더 나쁜 양극과 음극에 따라 달라집니다. 재료주기 성능이 좋지 않은 경우. 한편, 주기 동안 결정 구조가 너무 빨리 변하여 리튬 이온의 방출 및 수용이 완료되지 않을 수 있습니다. 한편, 활물질과 해당 전해질이 조밀하고 균일한 SEI 필름을 생성하지 못하여 활물질과 전해질 사이의 조기 부반응을 일으켜 전해질 소모가 빨라...
    더 읽어보기
  • 수성 나트륨 이온 배터리용 프러시안 블루 캐소드 재료: 준비 및 전기화학적 성능
    Sep 05 , 2022
    수성 나트륨 이온 배터리용 프러시안 블루 캐소드 재료: 준비 및 전기화학적 성능 저자 : 리용. 수성 나트륨 이온 배터리용 프러시안 블루 음극 재료: 준비 및 전기화학적 성능. Journal of Inorganic Materials[J], 2019, 34(4): 365-372 doi:10.15541/jim20180272 TOB New Energy 는 리튬 이온 배터리 및 나트륨 이온 배터리 등 프 러시안 블루 (PB)는 금속-유기 골격 복합체의 일종으로 수성 나트륨 이온 배터리의 양극 재료로 폭넓은 응용 가능성을 보여줍니다. 이 연구에서는 단일 소스 방법으로 PB 복합 재료를 준비했습니다. 또한 반응 온도, 시간 및 염산 농도가 PB 형태 및 전기화학적 성능에 미치는 영향을 체계적으로 조사하였다. 그 결과 ...
    더 읽어보기
  • 초고니켈 LiNi0.91Co0.06Al0.03O2@Ca3(PO4)2 양극재
    Oct 11 , 2022
    초고니켈 LiNi0.91Co0.06Al0.03O2@Ca3(PO4)2 양극재의 리튬 저장 안정성 향상 메커니즘 저자: ZHU Hezhen, WANG Xuanpeng, HAN Kang, YANG Chen, WAN Ruizhe, WU Liming, MAI Liqiang. 초고니켈 LiNi0.91Co0.06Al0.03O2@Ca3(PO4)2 음극 재료의 향상된 리튬 저장 안정성 메커니즘. 무기 재료 저널, 2022, 37(9): 1030-1036 DOI:10.15541/jim20210769 초고니켈 소재는 리튬이온 배터리의 새로운 양극으로 높은 비 용량, 고전압 및 저렴한 비용으로 인해 많은 관심을 받고 있습니다. 그러나 생성된 미세 균열, 기계적 분쇄 및 사이클링 중 비가역적인 상 변형으로 인해 사이클링 안정성이 ...
    더 읽어보기
  • 리튬 유황 배터리의 음극을 위한 유황 호스트로서의 코발트 도핑 중공 탄소 프레임워크
    Nov 03 , 2022
    리튬 유황 배터리의 음극을 위한 유황 호스트로서의 코발트 도핑 중공 탄소 프레임워크 저자: JIN Gaoyao, HE Haichuan, WU Jie, ZHANG Mengyuan, LI Yajuan, LIU Yunian. 리튬 유황 배터리의 음극을 위한 유황 호스트로서의 코발트 도핑 중공 탄소 프레임워크. Journal of Inorganic Materials[J], 2021, 36(2): 203-209 DOI:10.15541/jim20200161 토비 뉴에너지 는 리튬 이온전지 , 나트륨이온전지, 황전지, 고체 전지 등 다양한 전지소재 를 공급하고 있습니다. 견적 을 위해 저희에게 연락하십시오 . 리튬-황(Li-S) 배터리는 자연 풍부함, 저렴한 비용 및 높은 비용량(1672 mAh∙g-1)의 우수성을 지닌...
    더 읽어보기
  • 고품질 Fe4[Fe(CN)6]3 나노큐브 준비
    Jan 30 , 2023
    고품질 Fe4[Fe(CN)6]3 나노큐브 준비: 수성 나트륨 이온 배터리용 음극 재료 WANG Wu-Lian. 고품질 Fe4[Fe(CN)6]3 나노큐브: 수성 나트륨 이온 배터리용 음극 재료로서의 합성 및 전기화학적 성능. 무기재료학회지[J], 2019, 34(12): 1301-1308 doi:10.15541/jim20190076 고품질의 Fe4[Fe(CN)6]3 (HQ-FeHCF) 나노큐브는 간단한 수열법으로 합성되었습니다. 그것의 구조, 형태 및 수분 함량이 특징입니다. Fe4[Fe(CN)6]3는 ca. 면심입방상에 속하는 500nm. Fe4[Fe(CN)6]3은 1C, 2C, 5C, 10C, 20C, 30C 및 40C 속도에서 각각 124, 118, 105, 94, 83, 74 및 64 mAh·g -1의...
    더 읽어보기
  • Fe4[Fe(CN)6]3 나노큐브의 구조 특성
    Feb 16 , 2023
    고품질 Fe4[Fe(CN)6]3 나노큐브 준비: 수성 나트륨 이온 배터리용 음극 재료 WANG Wu-Lian. 고품질 Fe4[Fe(CN)6]3 나노큐브: 수성 나트륨 이온 배터리용 음극 재료로서의 합성 및 전기화학적 성능. 무기재료학회지[J], 2019, 34(12): 1301-1308 doi:10.15541/jim20190076 파트 2: Fe4[Fe(CN)6]3 나노큐브의 구조 특성화 그림 1(a)는 HQ-FeHCF 및 LQ-FeHCF의 XRD 패턴을 보여줍니다. HQ-FeHCF의 모든 회절 피크가 JCPDS NO와 일치한다는 것을 그림에서 볼 수 있습니다. 01-0239 카드. 합성된 HQ-FeHCF는 fm-3m 공간 점군 a=b=c=0.51 nm, α=β=γ=90°에 속하는 fcc(face-cente...
    더 읽어보기
  • 고품질 Fe4[Fe(CN)6]3 나노큐브의 전기화학적 성능 시험
    Feb 28 , 2023
    고품질 Fe4[Fe(CN)6]3 나노큐브 준비: 수성 나트륨 이온 배터리용 음극 재료 WANG Wu-Lian. 고품질 Fe4[Fe(CN)6]3 나노큐브: 수성 나트륨 이온 배터리용 음극 재료로서의 합성 및 전기화학적 성능. 무기재료학회지[J], 2019, 34(12): 1301-1308 doi:10.15541/jim20190076 고품질 Fe4[Fe(CN)6]3 나노큐브의 전기화학적 성능 시험 먼저, Na-H2O-PEG 전해질에서 HQ-FeHCF 및 LQ-FeHCF의 전기화학적 성능을 3전극 시스템을 사용하여 테스트하였다. 그림 4(a)는 스캔 속도가 1mV s-1인 Na-H2O-PEG 전해질에서 HQ-FeHCF 및 LQ-FeHCF의 순환 전압 전류 곡선을 보여줍니다. HQ-FeHCF에 두 쌍의 독립적인 산...
    더 읽어보기
  • 고체 리튬 전지용 MOF/Poly(Ethylene Oxide) 복합 고분자 전해질
    Mar 07 , 2023
    고체 리튬 전지용 MOF/Poly(Ethylene Oxide) 복합 고분자 전해질 량 펑칭, 웬 자오인 1. 중국 상하이 200050, 중국 과학 아카데미, 상하이 도자기 연구소, 에너지 변환을 위한 CAS 주요 재료 연구실 2. 재료 과학 및 광전자 공학 센터, University of Chinese Academy of Sciences, Beijing 100049, China 추상적인 유연성과 가공성이 뛰어난 고체 폴리머 전해질(SPE)을 사용하면 다양한 형상의 누출 없는 고체 배터리를 제작할 수 있습니다. 그러나 SPE는 일반적으로 이온 전도도가 낮고 리튬 금속 양극의 안정성이 좋지 않습니다. 여기에서는 PEO(Poly(Ethylene Oxide)) 고분자 전해질용 필러로 나노 크기의 MOF(Metal-...
    더 읽어보기
  • 리튬황전지 S@pPAN 음극용 유연 바인더 - 1부
    Mar 31 , 2023
    리튬황전지 S@pPAN 음극용 유연 바인더 - 1부 LI Tingting, ZHANG Yang, CHEN Jiahang, MIN Yulin, WANG Jiulin. 리튬황전지 S@pPAN 음극용 유연 바인더. 무기재료저널, 2022, 37(2): 182-188 DOI:10.15541/jim20210303 초록 Li-S 배터리의 양극재로 사용되는 황화 열분해 폴리(아크릴로니트릴)(S@pPAN) 복합재는 폴리황화물의 용해 없이 고체-고체 전환 반응 메커니즘을 구현합니다. 그러나 표면 및 인터페이스 특성은 전기화학적 성능에 큰 영향을 미치며 전기화학적 사이클링 동안 명백한 부피 변화도 있습니다. 본 연구에서는 단일벽 탄소나노튜브(SWCNT)와 나트륨 카르복시메틸 셀룰로오스(CMC)를 S@pPAN 음극의 바인더로 ...
    더 읽어보기
  • 리튬황전지 S@pPAN 음극용 유연 바인더 - 2부
    Apr 13 , 2023
    리튬황전지 S@pPAN 음극용 유연 바인더 - 2부 LI Tingting, ZHANG Yang, CHEN Jiahang, MIN Yulin, WANG Jiulin. 리튬황전지 S@pPAN 음극용 유연 바인더. 무기재료저널, 2022, 37(2): 182-188 DOI:10.15541/jim20210303 물리적 특성 특성화 S@pPAN에 존재하는 황의 형태 XRD로 재료를 조사했습니다. 복합재에 삽입된 황은 다음과 같습니다. 분자 단위에서도 크기가 10나노미터 미만인 아주 작은 입자입니다. 수준, 비정질 복합재를 형성합니다. 2θ=25.2°의 특성 피크는 그림 1은 흑연화된 결정면(002)에 해당하며, 복합체의 황 회절 피크는 황이 S@pPAN의 무정형. 그림. 1 XRD S@pPAN의 패턴 인장 강도 테스...
    더 읽어보기
  • 리튬황 배터리 음극용 황 호스트로서의 코발트 도핑 중공 탄소 프레임워크 - 1부
    Apr 25 , 2023
    리튬황전지 음극용 황 호스트로서의 코발트 도핑 중공 탄소 프레임워크 - 1부 JIN Gaoyao, HE Haichuan, WU Jie, ZHANG Mengyuan, LI Yajuan, LIU Younian 중국 창사 410083 중남대학교 화학 및 화학공학대학 후난성 마이크로 및 나노 재료 인터페이스 과학 핵심 연구실 초록 리튬-황 배터리는 에너지 저장을 위한 비용 효율적이고 에너지 밀도가 높은 차세대 시스템으로 간주됩니다. 그러나 활성 물질의 낮은 전도성, 셔틀 효과 및 산화환원 반응의 느린 동역학은 심각한 용량 감소 및 낮은 속도 성능을 초래합니다. 여기서는 코발트 나노입자가 내장된 구연산나트륨 유래 3차원 중공 탄소 골격을 황 음극의 호스트로 설계했습니다. 도입된 코발트 나노입자는 폴리설파이드를 효과적...
    더 읽어보기
첫 페이지 1 2 3 4 마지막 페이지
[  총  4  페이지]

메시지를 남겨주세요

    당신이 우리의 제품에 관심이 있고 세부 사항을 더 알고 싶은 경우에, 여기에 메시지를 남겨주세요

제품

회사

상단