-
나트륨 이온 배터리 음극재
Dec 27 , 2021
(1) 층상 금속 산화물 층상 금속 산화물은 간단한 제조 방법과 높은 비용량 때문에 연구자들이 선호합니다. 리튬 배터리와 유사하게, 층상 산화물 캐소드 재료도 나트륨 이온 배터리에서 상업적으로 사용하기 위한 유망한 캐소드 재료입니다. (2) 프러시안 블루 프러시안 블루 프레임 구조는 뛰어난 구조적 안정성과 속도 성능으로 나트륨 이온이 빠르게 삽입 및 방출되도록 합니다. 프러시안 블루 소재는 큰 응용 가능성을 보여주지만 상업적 응용에는 여전히 몇 가지 문제가 있습니다. 주된 이유는 결정수 및 공석의 존재가 재료의 특성에 영향을 미치기 때문입니다. 결정수는 나트륨 이온의 확산을 방해하고 물의 분해로 인해 배터리의 전기 화학적 성능이 더욱 저하되고 속도 성능이 저하됩니다. Vacancy는 재료의 전기전도도 저하로...
더 읽어보기
-
배터리 제조 후, 내부 양극 및 음극 물질을 활성화하기 위해 일정한 충방전 방식을 통해, 배터리의 충방전 성능과 자가 방전, 저장 및 기타 종합적인 성능을 향상,이 과정을 호출합니다. 형성. 리튬 이온 배터리의 형성 과정은 매우 복잡한 과정,이며 배터리 성능에 영향을 미치는 중요한 과정이기도 합니다, li+가 처음 충전될 때, li+가 처음으로 흑연에 삽입되기 때문에, 전기화학 반응, 첫 번째 충전 과정에서 배터리.에서 발생, 탄소 음극과 전해질, 사이의 상 INTERFACE에 탄소 전극 표면을 덮는 얇은 부동태층이 필연적으로 SEI 필름( 고체 전해질 인터페이스). 형성 원리 tob NEW ENERGY는 512 채널 5V2A,5V3A, 또한 고사양 5V30A 등.과 같은 다양한 사양의 리튬 이온 배터리 성...
더 읽어보기
-
강철 및 알루미늄 케이스(캔) 리튬 이온 배터리가 폭발적으로 큰 피해를 입었기 때문에, 현재, 주요 포장 재료인 알루미늄 적층 필름이 점차 주류.가 되었습니다. 배터리 케이스(캔) 이점 불리 스틸 캔 리튬 이온 배터리 우수한 물리적 안정성, 압력에 대한 강한 저항 큰 무게, 낮은 안전성, 2차 위험 알루미늄 캔 리튬 이온 배터리 경량, 안전성은 강철 캔 리튬 이온 배터리보다 약간 우수합니다. 높은 비용 및 2차 위험 알루미늄 적층 필름 파우치 셀 가벼운 품질, 저렴한 비용, 높은 안전성 팽창, 압력에 약한 저항 파우치 셀은 알루미늄 적층 필름으로 인해 팽창하기 쉬움, 팽창 가스 발생은 정상 가스 발생과 비정상 가스 발생으로 나눌 수 있습니다. 1. 일반 가스 발생 이는 전지 형성 과정,에서 가스 발생을 수반...
더 읽어보기
-
배터리 용량 테스트 및 분류의 원리와 기능 리튬 이온 배터리 용량 테스트 정렬이란 무엇입니까? 리튬 이온 배터리 용량 테스트 및 분류에 대한 두 가지 설명이 있습니다. 첫 번째 설명: 배터리 용량 정렬 및 성능 필터링. 컴퓨터 관리를 통한 리튬 배터리 용량 정렬을 통해 각 감지 지점의 데이터를 가져와, 배터리 용량의 크기를 분석, 내부 저항 및 기타 데이터, 결정 리튬 배터리의 품질 등급, 이 프로세스는 용량 테스트 및 분류. 리튬 배터리의 첫 번째 용량 테스트 및 분류 후, 일정 기간 동안 방치되어야 함, 일반적으로 15 이상 일. 이 기간 동안, 몇 가지 고유한 품질 문제가 나타납니다. 두 번째 설명: 리튬 배터리의 배치가 만들어진 후, 크기가 같더라도, 배터리의 용량이 달라. 따라서, 배터리는 사양에 ...
더 읽어보기
-
재료 재료 선택은 리튬 이온 배터리의 성능에 영향을 미치는 첫 번째 요소입니다. 사이클 성능이 좋지 않은 배터리 재료 를 선택하면 공정이 합리적이고 생산이 완벽하더라도 셀의 사이클을 보장할 수 없습니다. 그리고 더 좋은 재료를 사용하면 후속 생산 과정에서 약간의 문제가 있더라도 사이클 성능이 나쁘지 않을 수 있습니다. 물질적 관점에서 배터리의 사이클링 성능은 전해질과 일치할 때 사이클 성능이 더 나쁜 양극과 음극에 따라 달라집니다. 재료주기 성능이 좋지 않은 경우. 한편, 주기 동안 결정 구조가 너무 빨리 변하여 리튬 이온의 방출 및 수용이 완료되지 않을 수 있습니다. 한편, 활물질과 해당 전해질이 조밀하고 균일한 SEI 필름을 생성하지 못하여 활물질과 전해질 사이의 조기 부반응을 일으켜 전해질 소모가 빨라...
더 읽어보기
-
수성 나트륨 이온 배터리용 프러시안 블루 캐소드 재료: 준비 및 전기화학적 성능 저자 : 리용. 수성 나트륨 이온 배터리용 프러시안 블루 음극 재료: 준비 및 전기화학적 성능. Journal of Inorganic Materials[J], 2019, 34(4): 365-372 doi:10.15541/jim20180272 TOB New Energy 는 리튬 이온 배터리 및 나트륨 이온 배터리 등 프 러시안 블루 (PB)는 금속-유기 골격 복합체의 일종으로 수성 나트륨 이온 배터리의 양극 재료로 폭넓은 응용 가능성을 보여줍니다. 이 연구에서는 단일 소스 방법으로 PB 복합 재료를 준비했습니다. 또한 반응 온도, 시간 및 염산 농도가 PB 형태 및 전기화학적 성능에 미치는 영향을 체계적으로 조사하였다. 그 결과 ...
더 읽어보기
-
최신 배터리 기술 소개
Oct 11 , 2022
전기 자동차의 개발이 본격화되고 있으며, 전원 배터리는 가장 중요한 부품 중 하나입니다. 그 개발은 전기 자동차의 배터리 수명과 안전성에 결정적인 영향을 미칩니다. 최근에는 전고체 배터리, SVOLT의 젤리 배터리, NIO의 Nickel 55 ternary Cell, 리튬을 보충하기 위해 실리콘을 도핑한 IM 모터, CTP/CTC 기술과 같은 용어를 자주 듣습니다. 사실 기술적인 방향이 너무 많기 때문에 근본적인 목적은 배터리의 에너지 밀도와 안전성을 향상시키는 것입니다. 이 기사에서 편집자는 관련 기술 경로를 분류하도록 안내합니다. 에너지 밀도 및 안전성을 개선하는 방법 엔지니어들은 배터리 셀의 밀도를 높이는 것과 시스템(배터리 팩)의 밀도를 높이는 두 가지 유사한 경로를 사용하여 배터리 팩의 에너지 밀도...
더 읽어보기
-
고품질 Fe4[Fe(CN)6]3 나노큐브 준비: 수성 나트륨 이온 배터리용 음극 재료 WANG Wu-Lian. 고품질 Fe4[Fe(CN)6]3 나노큐브: 수성 나트륨 이온 배터리용 음극 재료로서의 합성 및 전기화학적 성능. 무기재료학회지[J], 2019, 34(12): 1301-1308 doi:10.15541/jim20190076 고품질의 Fe4[Fe(CN)6]3 (HQ-FeHCF) 나노큐브는 간단한 수열법으로 합성되었습니다. 그것의 구조, 형태 및 수분 함량이 특징입니다. Fe4[Fe(CN)6]3는 ca. 면심입방상에 속하는 500nm. Fe4[Fe(CN)6]3은 1C, 2C, 5C, 10C, 20C, 30C 및 40C 속도에서 각각 124, 118, 105, 94, 83, 74 및 64 mAh·g -1의...
더 읽어보기
-
고품질 Fe4[Fe(CN)6]3 나노큐브 준비: 수성 나트륨 이온 배터리용 음극 재료 WANG Wu-Lian. 고품질 Fe4[Fe(CN)6]3 나노큐브: 수성 나트륨 이온 배터리용 음극 재료로서의 합성 및 전기화학적 성능. 무기재료학회지[J], 2019, 34(12): 1301-1308 doi:10.15541/jim20190076 파트 2: Fe4[Fe(CN)6]3 나노큐브의 구조 특성화 그림 1(a)는 HQ-FeHCF 및 LQ-FeHCF의 XRD 패턴을 보여줍니다. HQ-FeHCF의 모든 회절 피크가 JCPDS NO와 일치한다는 것을 그림에서 볼 수 있습니다. 01-0239 카드. 합성된 HQ-FeHCF는 fm-3m 공간 점군 a=b=c=0.51 nm, α=β=γ=90°에 속하는 fcc(face-cente...
더 읽어보기
-
고품질 Fe4[Fe(CN)6]3 나노큐브 준비: 수성 나트륨 이온 배터리용 음극 재료 WANG Wu-Lian. 고품질 Fe4[Fe(CN)6]3 나노큐브: 수성 나트륨 이온 배터리용 음극 재료로서의 합성 및 전기화학적 성능. 무기재료학회지[J], 2019, 34(12): 1301-1308 doi:10.15541/jim20190076 고품질 Fe4[Fe(CN)6]3 나노큐브의 전기화학적 성능 시험 먼저, Na-H2O-PEG 전해질에서 HQ-FeHCF 및 LQ-FeHCF의 전기화학적 성능을 3전극 시스템을 사용하여 테스트하였다. 그림 4(a)는 스캔 속도가 1mV s-1인 Na-H2O-PEG 전해질에서 HQ-FeHCF 및 LQ-FeHCF의 순환 전압 전류 곡선을 보여줍니다. HQ-FeHCF에 두 쌍의 독립적인 산...
더 읽어보기
-
고체 리튬 전지용 MOF/Poly(Ethylene Oxide) 복합 고분자 전해질 량 펑칭, 웬 자오인 1. 중국 상하이 200050, 중국 과학 아카데미, 상하이 도자기 연구소, 에너지 변환을 위한 CAS 주요 재료 연구실 2. 재료 과학 및 광전자 공학 센터, University of Chinese Academy of Sciences, Beijing 100049, China 추상적인 유연성과 가공성이 뛰어난 고체 폴리머 전해질(SPE)을 사용하면 다양한 형상의 누출 없는 고체 배터리를 제작할 수 있습니다. 그러나 SPE는 일반적으로 이온 전도도가 낮고 리튬 금속 양극의 안정성이 좋지 않습니다. 여기에서는 PEO(Poly(Ethylene Oxide)) 고분자 전해질용 필러로 나노 크기의 MOF(Metal-...
더 읽어보기
-
전지 양극 슬러리의 제조방법 습식전극 제조공정 음극 전극으로는 이중 유성 혼합기를 사용하였다슬러리 준비 장비. 먼저 폴리불화비닐리덴(PVDF) 접착제를 준비합니다. 일반 혼합 탱크를 사용하여 먼저 일정량의 용매 NMP(N-메틸피롤리돈)를 붓고 설계된 고형분에 따라 바인더 PVDF 분말을 추가하고 4~6시간 동안 교반하여 PVDF 접착제를 얻습니다. PVDF 접착제는 일정한 점도를 지닌 무색 투명한 액체이며 필요에 따라 고형분 함량을 5%~10% 사이로 조절할 수 있습니다. 준비된 접착제 용액은 일반적으로 교반 과정에서 생성된 기포를 제거하기 위해 진공화하고 12시간 이상 방치해야 합니다. 그런 다음 밀봉된 파이프라인을 통해 정량 펌프를 통해 일정량을 슬러리 준비 혼합기로 전달합니다. 도전제 SP를 첨가하고 ...
더 읽어보기
-
리튬이온 원통형 배터리는 그 특성으로 인해 많은 전자 장치에 널리 사용됩니다. 높은 에너지 밀도와 긴 사이클 수명. 이번 글에서는 다음 내용을 설명하겠습니다. 리튬이온원통형전지의 생산과정을 자세히 살펴보자. 1. 리튬이온 배터리 M재질 준비 첫걸음 생산 과정은 원자재 준비입니다. 원료 리튬이온전지에 사용되는 양극재, 음극재, 전해질, 분리막. 이러한 물질은 다음을 보장하기 위해 순도가 높아야 합니다. 배터리의 품질. 음극재료 일반적으로 리튬 철 인산염(LFP), 리튬 니켈 코발트 망간산염으로 만들어집니다. (NCM), 리튬 코발트 산화물(LCO), 리튬 망간 산화물(LMO) 또는 리튬 니켈 코발트 알루미늄 산화물(NCA). 양극 재료는 일반적으로 다음과 같이 만들어집니다. 흑연, 전해질은 리튬 염과 용매로 ...
더 읽어보기
-
Sb 도핑된 O3형 Na0.9Ni0.5Mn0.3Ti0.2O2 Na이온 전지용 양극재 KONG Guoqiang, LENG Mingzhe, ZHOU Zhanrong, XIA 치, 션샤오팡. Sb 도핑된 O3 유형 Na0.9Ni0.5Mn0.3Ti0.2O2 음극 나트륨이온전지용 소재[J]. 무기재료학회지, 2023, 38(6): 656-662. 초록 사이클 안정성 및 특정 용량 나트륨 이온 배터리용 양극재는 달성에 중요한 역할을 합니다. 그들의 광범위한 적용. 구체적인 도입 전략을 바탕으로 구조적 안정성과 특정 용량을 최적화하는 이종 원소 양극재, O3-Na0.9Ni0.5-xMn0.3Ti0.2SbxO2(NMTSbx, x=0, 0.02, 0.04, 0.06)을 간단한 고체상 반응법으로 제조하였고, Sb의 효과 Na0...
더 읽어보기
-
이중 리튬염 젤 복합전해질: 리튬금속전지y에서의 제조 및 응용 궈 위샹, 황 Liqiang, WANG Gang, WANG Hongzhi. 이중 리튬 염 겔 복합체 전해질: 리튬 금속 배터리의 제조 및 응용. 저널 무기 재료, 2023, 38(7): 785-792 DOI:10.15541/jim20220761 초록 금속 Li는 고에너지 밀도 리튬 이온의 이상적인 양극 중 하나입니다. 이론 비용량이 높고 환원 가능성이 낮은 배터리 풍부한 매장량도 마찬가지다. 그러나 Li 양극의 적용에는 다음과 같은 문제가 있습니다. 기존 유기 액체 전해질과의 심각한 비 호환성. 여기서는 금속 Li과의 상용성이 만족스러운 겔 복합 전해질(GCE) 양극은 현장 중합을 통해 구성되었습니다. 더블 전해질에 도입된 리튬염 시스템은 전해질...
더 읽어보기
-
Na3Zr2Si2PO12세라믹 Na-이온 전지용 전해질: 분무건조법을 이용한 제조 및 그 방법 속성 저자: LI Wenkai, ZHAO Ning, BI Zhijie, GUO Xiangxin. Na3Zr2Si2PO12 Na 이온 배터리용 세라믹 전해질: 다음을 사용한 준비 분무건조방법 및 그 특성. 무기재료저널, 2022, 37(2): 189-196 DOI:10.15541/jim20210486 초록 현재 가연성 및 폭발성 유기물을 사용하는 Na 이온 배터리 전해질, 이제 고성능 나트륨이온 고체 개발이 시급하다 보다 안전하고 실용적인 적용을 실현하는 전해액입니다. Na3Zr2Si2PO12는 다음 중 하나입니다. 넓은 전기화학적 창을 통해 가장 유망한 고체 나트륨 전해질, 높은 기계적 강도, 우수한 공기 안정성 ...
더 읽어보기
-
Sergiy Kalnaus, 외. 전고체 배터리: 역학의 중요한 역할. 과학. 381, 1300(2023). 리튬 금속 양극을 사용하는 전고체 배터리는 더 높은 에너지 밀도, 더 긴 수명, 더 넓은 작동 온도 및 향상된 안전성을 제공할 수 있는 잠재력을 가지고 있습니다. 대부분의 연구는 재료와 인터페이스의 수송 역학과 전기화학적 안정성을 향상시키는 데 중점을 두었지만 재료 역학 조사가 필요한 중요한 과제도 있습니다. 고체-고체 인터페이스, 기계적 접촉 및 고체 배터리 작동 중 응력 발생이 있는 배터리에서는 이러한 인터페이스에서 안정적인 전하 이동을 유지하기 위한 전기화학적 안정성만큼 중요합니다. 이 검토에서는 정상 및 확장된 배터리 사이클링으로 인해 발생하는 스트레스와 변형 및 스트레스 완화를 위한 관련 메...
더 읽어보기
-
최근 진행상황 황화물계 전고체 리튬전지용 음극 ...1부 리튬금속 음극 저자: JIA Linan, DU 이보, 궈방준, 장시 1. 학교 상하이교통대학교 기계공학과, 상하이 200241, 중국 2. 상하이 Yili New Energy Technology Co., LTD. , 상하이 201306, 중국 초록 전고체 리튬 배터리(ASSLB)는 더 높은 에너지 밀도를 나타냅니다. 현재 주력인 액상리튬전지보다 안전성이 뛰어나다. 차세대 에너지 저장장치 연구 방향. 비교 다른 고체 전해질, 황화물 고체 전해질(SSE)에는 초고이온전도도, 저경도, 용이한 특성 가장 유망한 것 중 하나인 가공 및 우수한 계면 접촉 전고체전지 실현을 위한 길. 그러나 일부 다음과 같은 응용 분야를 제한하는 양극과 SSE 간의 계면 문제 계...
더 읽어보기
-
양극의 전기화학적 활성 P2-Nax[Mg0.33Mn0.67]O2 나트륨 이온 배터리 소재 저자: ZHANG Xiaojun1, LI Jiale1,2, QIU Wujie2,3, YANG Miaosen1, 리우 지안쥔2,3,4 1. 길림성 바이오매스 청정전환 및 고부가가치 활용 과학기술센터, 동북전력대학, 길림 132012, 중국 2. 고성능 세라믹 및 초미세 미세 구조 국가 핵심 연구소, 상하이 세라믹 연구소, 중국 과학 아카데미, 상하이 200050, 중국 3. 중국과학원대학교 재료과학 및 광전자 공학 센터, 베이징 100049, 중국 4. 중국과학원 항저우고등연구소 화학재료과학부, 항저우 310024, 중국 초록 원재료의 저렴한 가격과 폭넓은 유통의 장점을 바탕으로 나트륨이온전지는 최고의 대체 소재로 꼽힌다...
더 읽어보기
-
1. 리튬철망간인산염이란 무엇입니까? 리튬 철 망간 인산염은 리튬을 도핑하여 형성된 새로운 양극 재료입니다. 일정량의 망간 원소를 함유한 인산철. 이온 이후로 망간과 철 원소의 반경과 일부 화학적 성질은 유사합니다. 인산철망간리튬과 인산철리튬은 성질이 비슷하다. 구조이며 둘 다 감람석 구조를 가지고 있습니다. 에너지의 관점에서 밀도, 리튬 철 망간 인산염은 리튬 철보다 우수합니다. 인산염이므로 리튬 철의 "업그레이드 버전"으로 간주됩니다. 인산염". 리튬 철 망간 인산염은 에너지 밀도 병목 현상을 돌파할 수 있습니다. 리튬철인산염. 현재 리튬철의 최대 에너지밀도는 인산염은 161~164Wh/kg 정도에서 안정화되었습니다. 인산염계 소재로 더 높은 에너지 밀도로 리튬 철 망간 인산염 적용 인산철리튬의 에너지 ...
더 읽어보기