에 오신 것을 환영합니다 XIAMEN TOB NEW ENERGY TECHNOLOGY Co., LTD..
  • 한국의
  • Russian
  • f
  • i
  • y
  • t
  • p
battery machine and materials solution
검색
  • 나트륨 이온 배터리 음극재
    Dec 27 , 2021
    (1) 층상 금속 산화물 층상 금속 산화물은 간단한 제조 방법과 높은 비용량 때문에 연구자들이 선호합니다. 리튬 배터리와 유사하게, 층상 산화물 캐소드 재료도 나트륨 이온 배터리에서 상업적으로 사용하기 위한 유망한 캐소드 재료입니다. (2) 프러시안 블루 프러시안 블루 프레임 구조는 뛰어난 구조적 안정성과 속도 성능으로 나트륨 이온이 빠르게 삽입 및 방출되도록 합니다. 프러시안 블루 소재는 큰 응용 가능성을 보여주지만 상업적 응용에는 여전히 몇 가지 문제가 있습니다. 주된 이유는 결정수 및 공석의 존재가 재료의 특성에 영향을 미치기 때문입니다. 결정수는 나트륨 이온의 확산을 방해하고 물의 분해로 인해 배터리의 전기 화학적 성능이 더욱 저하되고 속도 성능이 저하됩니다. Vacancy는 재료의 전기전도도 저하로...
    더 읽어보기
  • 리튬 이온 배터리 형성 과정
    Mar 21 , 2022
    배터리 제조 후, 내부 양극 및 음극 물질을 활성화하기 위해 일정한 충방전 방식을 통해, 배터리의 충방전 성능과 자가 방전, 저장 및 기타 종합적인 성능을 향상,이 과정을 호출합니다. 형성. 리튬 이온 배터리의 형성 과정은 매우 복잡한 과정,이며 배터리 성능에 영향을 미치는 중요한 과정이기도 합니다, li+가 처음 충전될 때, li+가 처음으로 흑연에 삽입되기 때문에, 전기화학 반응, 첫 번째 충전 과정에서 배터리.에서 발생, 탄소 음극과 전해질, 사이의 상 INTERFACE에 탄소 전극 표면을 덮는 얇은 부동태층이 필연적으로 SEI 필름( 고체 전해질 인터페이스). 형성 원리 tob NEW ENERGY는 512 채널 5V2A,5V3A, 또한 고사양 5V30A 등.과 같은 다양한 사양의 리튬 이온 배터리 성...
    더 읽어보기
  • 리튬이온 파우치 셀 가스 발생 요인
    Apr 15 , 2022
    강철 및 알루미늄 케이스(캔) 리튬 이온 배터리가 폭발적으로 큰 피해를 입었기 때문에, 현재, 주요 포장 재료인 알루미늄 적층 필름이 점차 주류.가 되었습니다. 배터리 케이스(캔) 이점 불리 스틸 캔 리튬 이온 배터리 우수한 물리적 안정성, 압력에 대한 강한 저항 큰 무게, 낮은 안전성, 2차 위험 알루미늄 캔 리튬 이온 배터리 경량, 안전성은 강철 캔 리튬 이온 배터리보다 약간 우수합니다. 높은 비용 및 2차 위험 알루미늄 적층 필름 파우치 셀 가벼운 품질, 저렴한 비용, 높은 안전성 팽창, 압력에 약한 저항 파우치 셀은 알루미늄 적층 필름으로 인해 팽창하기 쉬움, 팽창 가스 발생은 정상 가스 발생과 비정상 가스 발생으로 나눌 수 있습니다. 1. 일반 가스 발생 이는 전지 형성 과정,에서 가스 발생을 수반...
    더 읽어보기
  • 배터리 용량 테스트 및 분류의 원리와 기능
    Jun 07 , 2022
    배터리 용량 테스트 및 분류의 원리와 기능 리튬 이온 배터리 용량 테스트 정렬이란 무엇입니까? 리튬 이온 배터리 용량 테스트 및 분류에 대한 두 가지 설명이 있습니다. 첫 번째 설명: 배터리 용량 정렬 및 성능 필터링. 컴퓨터 관리를 통한 리튬 배터리 용량 정렬을 통해 각 감지 지점의 데이터를 가져와, 배터리 용량의 크기를 분석, 내부 저항 및 기타 데이터, 결정 리튬 배터리의 품질 등급, 이 프로세스는 용량 테스트 및 분류. 리튬 배터리의 첫 번째 용량 테스트 및 분류 후, 일정 기간 동안 방치되어야 함, 일반적으로 15 이상 일. 이 기간 동안, 몇 가지 고유한 품질 문제가 나타납니다. 두 번째 설명: 리튬 배터리의 배치가 만들어진 후, 크기가 같더라도, 배터리의 용량이 달라. 따라서, 배터리는 사양에 ...
    더 읽어보기
  • 리튬 이온 배터리의 사이클링 성능에 영향을 미치는 요인은 무엇입니까?
    Aug 24 , 2022
    재료 재료 선택은 리튬 이온 배터리의 성능에 영향을 미치는 첫 번째 요소입니다. 사이클 성능이 좋지 않은 배터리 재료 를 선택하면 공정이 합리적이고 생산이 완벽하더라도 셀의 사이클을 보장할 수 없습니다. 그리고 더 좋은 재료를 사용하면 후속 생산 과정에서 약간의 문제가 있더라도 사이클 성능이 나쁘지 않을 수 있습니다. 물질적 관점에서 배터리의 사이클링 성능은 전해질과 일치할 때 사이클 성능이 더 나쁜 양극과 음극에 따라 달라집니다. 재료주기 성능이 좋지 않은 경우. 한편, 주기 동안 결정 구조가 너무 빨리 변하여 리튬 이온의 방출 및 수용이 완료되지 않을 수 있습니다. 한편, 활물질과 해당 전해질이 조밀하고 균일한 SEI 필름을 생성하지 못하여 활물질과 전해질 사이의 조기 부반응을 일으켜 전해질 소모가 빨라...
    더 읽어보기
  • 수성 나트륨 이온 배터리용 프러시안 블루 캐소드 재료: 준비 및 전기화학적 성능
    Sep 05 , 2022
    수성 나트륨 이온 배터리용 프러시안 블루 캐소드 재료: 준비 및 전기화학적 성능 저자 : 리용. 수성 나트륨 이온 배터리용 프러시안 블루 음극 재료: 준비 및 전기화학적 성능. Journal of Inorganic Materials[J], 2019, 34(4): 365-372 doi:10.15541/jim20180272 TOB New Energy 는 리튬 이온 배터리 및 나트륨 이온 배터리 등 프 러시안 블루 (PB)는 금속-유기 골격 복합체의 일종으로 수성 나트륨 이온 배터리의 양극 재료로 폭넓은 응용 가능성을 보여줍니다. 이 연구에서는 단일 소스 방법으로 PB 복합 재료를 준비했습니다. 또한 반응 온도, 시간 및 염산 농도가 PB 형태 및 전기화학적 성능에 미치는 영향을 체계적으로 조사하였다. 그 결과 ...
    더 읽어보기
  • 최신 배터리 기술 소개
    Oct 11 , 2022
    전기 자동차의 개발이 본격화되고 있으며, 전원 배터리는 가장 중요한 부품 중 하나입니다. 그 개발은 전기 자동차의 배터리 수명과 안전성에 결정적인 영향을 미칩니다. 최근에는 전고체 배터리, SVOLT의 젤리 배터리, NIO의 Nickel 55 ternary Cell, 리튬을 보충하기 위해 실리콘을 도핑한 IM 모터, CTP/CTC 기술과 같은 용어를 자주 듣습니다. 사실 기술적인 방향이 너무 많기 때문에 근본적인 목적은 배터리의 에너지 밀도와 안전성을 향상시키는 것입니다. 이 기사에서 편집자는 관련 기술 경로를 분류하도록 안내합니다. 에너지 밀도 및 안전성을 개선하는 방법 엔지니어들은 배터리 셀의 밀도를 높이는 것과 시스템(배터리 팩)의 밀도를 높이는 두 가지 유사한 경로를 사용하여 배터리 팩의 에너지 밀도...
    더 읽어보기
  • 고품질 Fe4[Fe(CN)6]3 나노큐브 준비
    Jan 30 , 2023
    고품질 Fe4[Fe(CN)6]3 나노큐브 준비: 수성 나트륨 이온 배터리용 음극 재료 WANG Wu-Lian. 고품질 Fe4[Fe(CN)6]3 나노큐브: 수성 나트륨 이온 배터리용 음극 재료로서의 합성 및 전기화학적 성능. 무기재료학회지[J], 2019, 34(12): 1301-1308 doi:10.15541/jim20190076 고품질의 Fe4[Fe(CN)6]3 (HQ-FeHCF) 나노큐브는 간단한 수열법으로 합성되었습니다. 그것의 구조, 형태 및 수분 함량이 특징입니다. Fe4[Fe(CN)6]3는 ca. 면심입방상에 속하는 500nm. Fe4[Fe(CN)6]3은 1C, 2C, 5C, 10C, 20C, 30C 및 40C 속도에서 각각 124, 118, 105, 94, 83, 74 및 64 mAh·g -1의...
    더 읽어보기
  • Fe4[Fe(CN)6]3 나노큐브의 구조 특성
    Feb 16 , 2023
    고품질 Fe4[Fe(CN)6]3 나노큐브 준비: 수성 나트륨 이온 배터리용 음극 재료 WANG Wu-Lian. 고품질 Fe4[Fe(CN)6]3 나노큐브: 수성 나트륨 이온 배터리용 음극 재료로서의 합성 및 전기화학적 성능. 무기재료학회지[J], 2019, 34(12): 1301-1308 doi:10.15541/jim20190076 파트 2: Fe4[Fe(CN)6]3 나노큐브의 구조 특성화 그림 1(a)는 HQ-FeHCF 및 LQ-FeHCF의 XRD 패턴을 보여줍니다. HQ-FeHCF의 모든 회절 피크가 JCPDS NO와 일치한다는 것을 그림에서 볼 수 있습니다. 01-0239 카드. 합성된 HQ-FeHCF는 fm-3m 공간 점군 a=b=c=0.51 nm, α=β=γ=90°에 속하는 fcc(face-cente...
    더 읽어보기
  • 고품질 Fe4[Fe(CN)6]3 나노큐브의 전기화학적 성능 시험
    Feb 28 , 2023
    고품질 Fe4[Fe(CN)6]3 나노큐브 준비: 수성 나트륨 이온 배터리용 음극 재료 WANG Wu-Lian. 고품질 Fe4[Fe(CN)6]3 나노큐브: 수성 나트륨 이온 배터리용 음극 재료로서의 합성 및 전기화학적 성능. 무기재료학회지[J], 2019, 34(12): 1301-1308 doi:10.15541/jim20190076 고품질 Fe4[Fe(CN)6]3 나노큐브의 전기화학적 성능 시험 먼저, Na-H2O-PEG 전해질에서 HQ-FeHCF 및 LQ-FeHCF의 전기화학적 성능을 3전극 시스템을 사용하여 테스트하였다. 그림 4(a)는 스캔 속도가 1mV s-1인 Na-H2O-PEG 전해질에서 HQ-FeHCF 및 LQ-FeHCF의 순환 전압 전류 곡선을 보여줍니다. HQ-FeHCF에 두 쌍의 독립적인 산...
    더 읽어보기
  • 전지용 양극 슬러리의 제조방법
    Jun 02 , 2023
    전지용 양극 슬러리의 제조방법 습식 전극 제조 공정 이중 유성 믹서가 음극 전극 으로 사용되었습니다.슬러리 준비 장비. 먼저 폴리비닐리덴 플루오라이드(PVDF) 접착제를 준비합니다. 일반 혼합 탱크를 사용하여 먼저 일정량의 용매 NMP(N-메틸피롤리돈)를 붓고 설계된 고형분에 따라 결합제 PVDF 분말을 추가하고 4~6시간 동안 교반하여 PVDF 접착제를 얻습니다. PVDF 접착제는 일정한 점도를 가진 무색 투명 액체이며 필요에 따라 고체 함량을 5%에서 10% 사이로 조절할 수 있습니다. 준비된 접착제 용액은 일반적으로 교반 과정에서 발생하는 기포를 제거하기 위해 진공 상태로 12시간 이상 방치해야 합니다. 그런 다음 밀봉된 파이프라인을 통해 정량 펌프를 통해 일정량이 슬러리 준비 혼합기로 전달됩니다. 전...
    더 읽어보기
  • 리튬 이온 원통형 전지 제조 공정
    Jul 25 , 2023
    리튬 이온 원통형 배터리는 에너지 밀도가 높고 수명이 길기 때문에 많은 전자 장치에 널리 사용됩니다. 이 기사에서는 리튬 이온 원통형 배터리의 생산 공정에 대해 자세히 설명합니다.   1. 원료 준비 생산 공정의 첫 번째 단계는 원료 준비입니다. 리튬이온전지의 원료로는 양극재, 음극재, 전해질, 분리막 등이 있다. 이러한 재료는 배터리의 품질을 보장하기 위해 순도가 높아야 합니다. 음극 물질은 일반적으로 리튬 철 인산염(LFP), 리튬 니켈 코발트 망간산염(NCM), 리튬 코발트 산화물(LCO), 리튬 망간 산화물(LMO) 또는 리튬 니켈 코발트 알루미늄 산화물(NCA)로 구성됩니다. 양극 소재는 일반적으로 흑연으로 만들어지며 전해질은 리튬염과 용매로 구성됩니다. 분리기는 일반적으로 폴리에틸렌 또는...
    더 읽어보기
  • Sb Doped O3 Type Na0.9Ni0.5Mn0.3Ti0.2O2 Na 이온 전지용 양극재
    Aug 09 , 2023
    Sb Doped O3 Type Na0.9Ni0.5Mn0.3Ti0.2O2 Na 이온 전지용 양극재 KONG Guoqiang, LENG Mingzhe, ZHOU Zhanrong, XIA Chi, SHEN Xiaofang. Sb 도핑된 O3 Type Na0.9Ni0.5Mn0.3Ti0.2O2 Na-이온 배터리용 양극 재료[J]. 무기재료학회지, 2023, 38(6): 656-662. 추상적인 나트륨 이온 배터리용 양극 재료의 주기 안정성 및 비용량은 광범위한 응용을 달성하는 데 중요한 역할을 합니다. 양극재의 구조적 안정성과 비용량을 최적화하기 위해 특정 이종원소를 도입하는 전략을 바탕으로 간단한 고체 반응 방법과 Sb 도핑량이 Na0.9Ni0.5Mn0.3Ti0.2O2 양극재의 나트륨 저장 특성에 미치는 영향을 조...
    더 읽어보기
  • 이중 리튬염 젤 복합체 전해질: 리튬 금속 배터리의 제조 및 응용
    Aug 28 , 2023
    이중 리튬염 젤 복합체 전해질: 리튬 금속 배터리의 제조 및 응용 GUO Yuxiang, HUANG Liqiang, WANG Gang, WANG Hongzhi. 이중 리튬 염 젤 복합체 전해질: 리튬 금속 배터리의 제조 및 응용. 무기재료저널, 2023, 38(7): 785-792 DOI: 10.15541/jim20220761 추상적인 금속 Li는 높은 이론적 비용량, 낮은 환원 전위 및 풍부한 매장량으로 인해 고에너지 밀도 리튬 이온 배터리에 이상적인 양극 중 하나입니다. 그러나 Li 양극의 적용은 기존 유기 액체 전해질과의 심각한 비 호환성 문제를 겪고 있습니다. 여기서, 금속 Li 양극과의 상용성이 만족스러운 겔 착물 전해질(GCE)을 현장 중합을 통해 구축하였다. 전해질에 도입된 이중 리튬염 시스템은...
    더 읽어보기
  • Na3Zr2Si2PO12 Na-이온 배터리용 세라믹 전해질
    Sep 11 , 2023
    Na3Zr2Si2PO12 Na-이온 전지용 세라믹 전해질: 분무건조법을 이용한 제조 및 그 특성 저자: LI Wenkai, ZHAO Ning, BI Zhijie, GUO Xiangxin. Na3Zr2Si2PO12 Na-이온 전지용 세라믹 전해질: 분무건조법을 이용한 제조 및 그 특성. 무기재료저널, 2022, 37(2): 189-196 DOI: 10.15541/jim20210486 추상적인 현재 가연성, 폭발성 유기 전해질을 사용하고 있는 나트륨 이온 배터리는 이제 보다 안전하고 실용적인 응용을 실현하기 위해 고성능 나트륨 이온 고체 전해질 개발이 시급합니다. Na3Zr2Si2PO12는 넓은 전기화학적 창, 높은 기계적 강도, 우수한 공기 안정성 및 높은 이온 전도성으로 인해 가장 유망한 고체 나트륨 전해질...
    더 읽어보기
  • 전고체 배터리: 역학의 중요한 역할
    Sep 27 , 2023
    Sergiy Kalnaus 등. 전고체 배터리: 역학의 중요한 역할. 과학. 381, 1300(2023). 리튬 금속 양극을 사용하는 전고체 배터리는 더 높은 에너지 밀도, 더 긴 수명, 더 넓은 작동 온도 및 향상된 안전성을 제공할 수 있습니다. 대부분의 연구는 재료와 인터페이스의 수송 역학과 전기화학적 안정성을 향상시키는 데 중점을 두었지만 재료 역학 조사가 필요한 중요한 과제도 있습니다. 고체-고체 인터페이스, 기계적 접촉 및 고체 배터리 작동 중 응력 발생이 있는 배터리에서는 이러한 인터페이스에서 안정적인 전하 이동을 유지하기 위한 전기화학적 안정성만큼 중요합니다. 이 검토에서는 정상 및 확장된 배터리 사이클링으로 인해 발생하는 스트레스와 변형 및 스트레스 완화를 위한 관련 메커니즘(일부는 이러한 배...
    더 읽어보기
  • 황화물 기반 전고체 리튬 배터리용 양극에 대한 최근 진행 상황
    Oct 08 , 2023
    황화물계 전고체 리튬전지용 음극에 대한 최근 동향 —— 1부 리튬 금속 양극 작가: JIA Linan, DU Yibo, GUO Bangjun, ZHANG Xi 1. 중국 상하이 교통대학교 기계공학부 200241 2. Shanghai Yili New Energy Technology Co., LTD. , 상하이 201306, 중국 추상적인 전고체리튬전지(ASSLB)는 차세대 에너지저장장치의 주요 연구 방향인 현재의 액체리튬전지보다 높은 에너지 밀도와 안전성을 보여준다. 다른 고체 전해질과 비교하여 황화물 고체 전해질(SSE)은 초고이온 전도도, 낮은 경도, 용이한 가공 및 우수한 계면 접촉 특성을 갖고 있어 전고체 실현을 위한 가장 유망한 경로 중 하나입니다. -상태 배터리. 그러나 양극과 SSE 사이에는 계면...
    더 읽어보기
  • 황화물 기반 전고체 리튬 배터리용 양극에 대한 최근 진행 상황 - 기타 양극
    Oct 25 , 2023
    이전 기사에 이어서 황화물계 전고체 리튬전지용 음극에 대한 최근 동향 —— 2부 기타 양극 저자:  JIA Linan, DU Yibo, GUO Bangjun, ZHANG Xi 1. 중국 상하이 교통대학교 기계공학부 200241 2. Shanghai Yili New Energy Technology Co., LTD. , 상하이 201306, 중국 리튬 합금 양극 심각한 계면 부반응으로 인해 순수 리튬은 단기간에 황화물 고체 전해질에 직접 사용하기 어렵기 때문에 리튬 합금 소재가 더욱 매력적인 옵션을 제공합니다. 금속 리튬 양극과 비교하여 리튬 합금 양극은 계면 습윤성을 향상시키고, 계면 부반응의 발생을 억제하며, 고체 전해질 계면의 화학적 및 기계적 안정성을 향상시키고, 리튬 수지상 결정의 성장으로 인...
    더 읽어보기
  • P2-Nax[Mg0.33Mn0.67]O2 나트륨이온전지 양극재료의 전기화학적 활성
    Nov 08 , 2023
    P2-Nax[Mg0.33Mn0.67]O2 나트륨이온전지 양극재료의 전기화학적 활성 저자: ZHANG Xiaojun 1 , LI Jiale 1,2 , QIU Wujie 2,3 , YANG Miaosen 1 , LIU Jianjun 2,3,4 1. 중국 지린 132012 동북전력대학교 길림성 바이오매스 청정전환 및 고부가가치 활용 과학기술센터 2. 중국 상하이 도자기 연구소, 중국 과학 아카데미, 상하이 200050, 중국 고성능 세라믹 및 초미세 미세 구조 국가 핵심 연구소 3. 중국 베이징 100049 중국과학원대학교 재료과학 및 광전자 공학 센터 4. 중국 항저우 310024 중국과학원대학교 항저우고등연구소 화학재료과학부 추상적인 나트륨이온전지는 가격이 저렴하고 원자재 분포가 넓다는 장점으로 인해 리튬이온...
    더 읽어보기
  • 전고체박막 리튬전지용 비정질 LiSiON 박막전해질
    Jan 04 , 2024
    저자: XIA Qiuying, SUN Shuo, ZAN Feng, XU Jing, XIA Hui 중국 난징 210094 난징이공대학교 재료공학부 추상적인 전고체 박막 리튬 배터리(TFLB)는 마이크로 전자 장치에 이상적인 전원으로 간주됩니다. 그러나 비정질 고체 전해질의 상대적으로 낮은 이온 전도도는 TFLB의 전기화학적 성능 향상을 제한합니다. 본 연구에서는 TFLB용 고체 전해질로서 마그네트론 스퍼터링을 통해 비정질 리튬실리콘산질화물(LiSiON) 박막을 제조하였다. 최적화된 증착 조건을 갖춘 LiSiON 박막은 상온에서 6.3×10-6 S∙cm-1의 높은 이온 전도성과 5V 이상의 넓은 전압 창을 나타내어 TFLB용 박막 전해질로 적합합니다. MoO3/LiSiON/Li TFLB는 큰 비용량(50mA∙g...
    더 읽어보기
첫 페이지 1 2 3 마지막 페이지
[  총  3  페이지]

메시지를 남겨주세요

    당신이 우리의 제품에 관심이 있고 세부 사항을 더 알고 싶은 경우에, 여기에 메시지를 남겨주세요

제품

회사

상단