-
리튬 이온 배터리는 주로 양극, 음극, 전해질, 그리고 분리막으로 구성됩니다. 충전 시에는 리튬 이온이 양극재에서 탈리되어 전해질을 통과한 후 음극재에 삽입됩니다. 방전 시에는 리튬 이온이 반대 방향으로 이동하여 음극재에서 탈리된 후 전해질을 통해 양극재로 돌아갑니다. 양극과 음극 사이에서 리튬 이온이 반복적으로 삽입되고 탈리되는 과정을 통해 배터리는 충방전 기능을 수행하고, 장치에 전기 에너지를 공급합니다. 리튬 이온 배터리의 용량 저하는 가역적 용량 손실과 비가역적 용량 손실로 구분됩니다. 가역적 용량 손실은 비교적 "경미"하며, 충전-방전 프로토콜 조정(예: 충전 전류 최적화, 전압 한계) 및 사용 조건 개선(예: 온도/습도 제어)을 통해 부분적으로 회복될 수 있습니다. 반면, 비가역적 용량 손실은 배...
더 읽어보기
-
리튬 도금은 충전 과정에서 리튬 이온이 흑연 음극에 삽입되지 않고 전기화학적 환원을 거쳐 금속성 리튬 침전물을 형성하는 유해한 현상을 말합니다. 이로 인해 음극 표면에 특징적인 은회색 리튬 금속층 또는 수지상 리튬 결정이 형성됩니다. 전통적으로 배터리 분해는 리튬 도금 사고가 의심되는 경우, 특히 용량 이상이나 수지상 성장이 관찰될 때 이를 확인하는 주된 방법이었습니다. 그러나 이제 첨단 비파괴 진단 기술을 통해 정교한 전기화학 분석을 통해 정확한 검출이 가능해졌습니다. Ⅰ. 고급 비파괴 탐지 방법론: 1. 전압 프로파일 디컨볼루션 분석 정전류(CC) 충전 사이클 동안 리튬 이온 배터리는 일반적으로 충전 상태(SOC)에 비례하여 단조롭게 증가하는 전압 곡선을 보입니다. 정전압(CV) 충전 단계에서 조기 전압...
더 읽어보기
-
리튬 배터리 제조 과정에서 흔히 간과되는 코팅 공정 중 A/B면 코팅 오정렬 문제는 배터리 용량, 안전성 및 사이클 수명에 중대한 영향을 미칩니다. 오정렬은 전극 앞면과 뒷면 코팅의 위치 정렬 또는 두께 분포의 불일치를 의미하며, 이는 국부적인 리튬 도금 및 전극의 기계적 손상과 같은 위험을 초래할 수 있습니다. 이 글에서는 장비 정밀도, 공정 매개변수 설정, 재료 특성 등의 관점에서 정렬 불량의 근본 원인을 분석하는 동시에 기업이 제품의 일관성과 안정성을 향상하는 데 도움이 되는 타겟팅된 최적화 전략을 제안합니다. Ⅰ. A/B면 정렬 불량의 원인 1. 장비 요인 롤 시스템 조립 정확도가 부족함: 백킹 롤과 코팅 롤을 설치하는 동안 수평 또는 동축 편차가 발생하면 위치가 변경될 수 있습니다. 코팅 헤드 위치...
더 읽어보기
-
리튬 이온 배터리 제조에서 슬러리(주로 전극 슬러리)의 미세도는 전극 성능(용량, 속도 특성, 사이클 수명, 안전성 등) 및 공정 안정성에 영향을 미치는 핵심 매개변수입니다. 배터리 종류에 따라 슬러리에 대한 미세도 요건이 크게 다릅니다(일반적으로 D50, D90, Dmax와 같은 입도 분포 지표로 측정). 이는 양극/음극 활물질의 고유한 특성(결정 구조, 이온/전자 전도도, 비표면적, 기계적 강도, 반응성 등)과 전극 미세 구조에 대한 요건이 다르기 때문입니다. 다음은 주요 배터리 유형에 대한 슬러리 미세도 요구 사항에 대한 자세한 분석입니다. I. 리튬 코발트 산화물(LCO) 배터리 1. 재료 특성: 적층 구조(R-3m), 높은 이론 용량(~274 mAh/g), 높은 압축 밀도, 그러나 구조적 안정성이 ...
더 읽어보기
-
I. 폴리아크릴레이트(PAA) 바인더의 특성 및 장점 전해질 용매의 팽창이 최소화됨: 충전/방전 사이클 동안 전극 시트의 구조적 무결성을 유지하면서 팽창이 낮습니다. 카르복실기의 높은 비율: 극성 카르복실기의 높은 밀도는 하이드록실기를 함유하는 활성 물질과 강력한 수소 결합을 형성하여 분산 안정성을 향상시킵니다. 연속 필름 형성: 재료 표면에 균일한 필름을 생성하여 활성 물질과 전류 집전체 사이의 접촉을 개선합니다. 뛰어난 기계적 안정성: 전극 제조 시 가공이 용이해집니다. 향상된 SEI 형성 및 사이클 성능: 극성 작용기의 농도가 높아 실리콘 소재 표면과의 수소 결합을 촉진하고 안정적인 고체 전해질 계면(SEI) 층을 형성하는 데 도움이 되어 사이클 수명이 더욱 향상됩니다. II. 개발 과제 기존의 PAA...
더 읽어보기