에 오신 것을 환영합니다 XIAMEN TOB NEW ENERGY TECHNOLOGY Co., LTD..
  • 한국의
  • Russian
  • f
  • i
  • y
  • t
  • p
battery machine and materials solution

  • 6 리튬-이온 배터리 유형--리튬 코발트 산화물
    Jul 23 , 2020
    리튬 코발트 산화물 배터리 로 구성됩 코발트 산화물 음극선 고 흑연 탄소 양극 . 이 LCO 음극선 는 계층 구조는 동안,출력,리튬 이온의 이동 양극에서 음극,흐름과 함께 반면 배터리가 충전되고 있습니다. 그것의 높은 특정한 에너지를 만드는 리튬 코발트 산화물 배터리의 인기있는 선택을 위한 이동 전화,휴대용 퍼스널 컴퓨터 및 디지털 카메라 등이 있습니다. 의 단점을 리튬 코발트 산화물 건전지가 상대적으로 짧은 수명,낮은 열적 안정성과 제한된 적재 능력이 있습니다. 다음과 같은 다른 코발트-혼합된 리튬 이온 건전지,리튬 코발트 산화물 사용 흑연극 고,그것의 주기 생활은 주로에 의해 제한됩 체 전해질 인터페이스 (SEI). 그것은 주로 나타난 점진적으로 두껍게 SEI 영화와 양극 리튬 도금하는 동안 급속 충전 ...
    더 읽어보기
  • 6 리튬-이온 배터리 유형--리튬 망간 산화물
    Aug 03 , 2020
    입체적인 첨정석 구조 형성되는 아키텍처의 리튬 manganate 배터리 을 개선의 흐름이온 배터리 전극 함으로써 내부 저항 및 개선하고 현재 수용력이 있습니다. 의 또 다른 장점은 첨정은 높은 열안정성,안전성 향상,그러한 사이클 및 캘린더 수명. 남자 새로운 에너지 제공하는 높은 quanlity l ithium 망간 분말 고 LiMn2O4 음극 재료 한 리튬 배터리 음극 재료 . 우리 또한 모든 리튬 이온 전지 재료와 장비에 대한 건전지 제조업과 연구를 한다. 그것을 형성하는 세 가지 차원 크리스탈 골격에 음극의 리튬 manganate 배터리입니다. 넬 구조로 구성되어 일반적으로 다이아몬드 모양을 연결되어 있으로 격자와 일반적으로 나타나 후에는 배터리를 형성한다. 첨정석을 제공합 낮은 저항하지만 낮은 에너지...
    더 읽어보기
  • 6 가지 리튬 이온 배터리 유형 —— 리튬 니켈 망간 코발트 산화물 (nmc)
    Aug 20 , 2020
    가장 성공적인 리튬 이온 시스템 중 하나는니켈-망간-코발트 (nmc). 처럼망간 산 리튬, 시스템은 에너지 또는 전원 배터리로 사용하도록 사용자 정의 할 수 있습니다. 예를 들어,nmc적당한 부하에서 18650 배터리의 용량은 약 2,800mah이며 4a ~ 5a 방전 전류를 제공 할 수 있습니다. 특정 전력에 최적화 된 동일한 유형의 nmc는 용량이 2,000mah에 불과하지만 20a의 연속 방전 전류를 제공합니다. 실리콘 양극은 4000mah 이상에 도달하지만 부하 용량이 감소하고 사이클 수명이 단축됩니다. 흑연에 첨가 된 실리콘에는 결함이 있습니다. 즉, 충전과 방전에 따라 양극이 팽창하고 수축하여 기계적 응력이 높은 배터리의 구조가 불안정 해집니다.nmc의 비밀은 니켈과 망간의 조합에 있습니다. 니켈...
    더 읽어보기
  • 6 리튬 이온 배터리 유형 —— 리튬 철 인산염 (LFP)
    Sep 07 , 2020
    리튬 인산염 좋은 전기 화학적 성능과 낮은 저항. 이 nanoscale 인산염 음극 재료. 주요 장점은 높은 정격 전류와 긴 사이클 수명입니다. 우수한 열 안정성, 향상된 보안 및 남용에 대한 내성. If 장기간 고전압을 유지하는 인산 리튬은 완전 충전 조건에 더 잘 견디며 스트레스를 덜받습니다. 기타 리튬 이온 시스템. 단점은 공칭 전압이 3.2V 배터리는 특정 에너지를 보다 낮게 만듭니다. 코발트 도핑 리튬 이온 배터리. 인산 리튬은 자기 방전 보다 기타 리튬 이온 배터리는 노화와 이퀄라이제이션 문제를 일으킬 수 있습니다. 이것은 high-quality 를 사용하여 상쇄 될 수 있습니다. 배터리 또는 고급 배터리 관리 시스템, 둘 다 배터리 팩의 비용을 증가시킵니다. 배터리 수명은 제조 공정의 불순물에 ...
    더 읽어보기
  • 4680 세포 - 더 큰 배터리 셀은 더 높은 에너지 밀도를 가져옵니다. ?
    Nov 13 , 2020
    이 이다 2170 전지 4680 과 비교 배터리 셀. 각 셀의 부피는 활성 에너지 저장 물질을 포함하는 모든 내부 층으로 구성되며, 각 셀의 표면적은 배터리 셀의 얇은 금속 캔인 외부 층으로 구성됩니다. If 4680 로 이동하여 볼륨을 증가시킵니다. 형식, 내부 재료를 저장하는 에너지에 비해 얇은 보호 셀 캔의 총 무게를 줄입니다. 표면적과 부피는 직경에 대한 증분 변경의 영향을받습니다. 표면적은 셀 캔을 나타내고 부피는 representa 에너지 저장 물질을 포함하는 내부 레이어 표면적 하지 않습니다 많이 변하지 만 볼륨은 크게 변합니다. 이것은 더 큰 배터리 셀을 의미합니다. 있다 셀에 비해 더 많은 에너지 저장 물질 can. 이것은 단지 포장하는 것입니다. what tesla 's 의 범위가 7 % ...
    더 읽어보기
  • 원통형 리튬 배터리 셀을 케이스에 적재합니다
    Mar 05 , 2021
    하이 냄비 테스트 전압 200 ~ 500V 배터리 셀이에 넣기 전에 필요합니다. 배터리 스테인레스 스틸 케이스 (고전압 짧은 회로의 경우) 및 진공 처리 (배터리 셀을로드하기 전에 더 먼지를 제어하십시오). 우리는 가장 전문가를 제공 할 수 있습니다 리튬 배터리 셀 단락 회로 테스터 . . 습기, Burr 및 먼지는 특별한 강조가 필요한 리튬 배터리 제조의 세 가지 제어점입니다. 이전 프로세스가 완료되면 배터리 셀의 바닥에 하단 가스켓을 놓고 양극 탭을 구부리고 배터리 탭이 롤 코어의 핀홀을 향하게하고 있으며 마지막으로 강철 또는 알루미늄 케이스에 수직으로 삽입됩니다 ( 복용 모델 18650 외경을 사용하여 외경 ± 18mm + ± 71.5mm). 왜냐하면 때문에 배터리 전극 조각의 리바운드 값과 액체 침투...
    더 읽어보기
  • 배터리 셀 건조 공정
    Apr 16 , 2021
    후 배터리 셀 원통형 배터리가 롤링 홈을 통과합니다. 배터리 그루 빙 기계, 다음 단계는 매우 중요합니다 : 배터리 셀을 건조시킵니다 . . 생산 공정의 배터리 셀은 물의시면을 적시에 제거하지 않으면 일정한 양의 물을 가져오고 표준 가치 범위 내에서 제어하여 배터리 성능 및 안전성을 심각하게 영향을 미칩니다. 일반적으로, 자동 진공 오븐 배터리 셀을 건조시키는 데 사용됩니다. 배터리 셀을 새로 넣으십시오 진공 오븐, 오븐에 건조제를 넣고, 매개 변수를 설정하고, 가열 85 ℃ (리튬 철 인산 세포와 함께 예). 표준에 도달하기 위해 몇 가지 진공 건조 사이클이 필요합니다. TOB 새로운 에너지 가장 진보 된 것을 제공 할 수 있습니다 실험실 오븐 용 리튬 이온 배터리 재료 및 리튬 이온 세포 베이킹 및 건조...
    더 읽어보기
  • 리튬 이온 셀 배터리 전해질 충전 공정
    Apr 23 , 2021
    후 배터리 셀 건조 프로세스, 배터리 셀은 수분을 테스트하고 다음 단계로 진행하기 전에 표준을 충족합니다. 배터리 전해질 충전 공정 (원통형 세포 ). 볶은 배터리 셀을 새로 넣으십시오 진공 장갑 상자빨리, 무게를 기록하고, 무게를 기록하고, 배터리의 윗면에 주입 컵을 놓고 전해질을 컵에 넣으십시오. IF 전해질의 용량에 대해 확실하지 않고 전해질을 전해질에 넣고 일정 기간 동안 흡수하고 전해질 주입 공정을위한 실험용 용량에 따라 전지 셀의 최대 액체 흡수를 테스트하고, 전지 셀의 최대 액체 흡수를 테스트하십시오. 배터리 셀을 진공 상자에 넣으십시오 (진공 ≤ -0.0.09MPa)에 전해질의 침투를 가속하여 전극 호일을 촉진시키고, 여러 사이클 후, 배터리 셀의 무게를 계산하고 주입량은 디자인 값과 일치합니...
    더 읽어보기
  • 리튬 이온 배터리 셀 베이킹 원리 및 영향 요인
    Jun 04 , 2021
    진공 건조는 폐쇄 공간에서 건조 될 물질을 배치하고 진공 장비를 사용하여 폐쇄 공간의 공기 압력을 대기압으로 연속적으로 가열하면서 물질의 물 분자가 점차적으로 확산되도록합니다. 압력 차 및 농도 차이의 효과로 인한 재료의 표면 및 재료 표면이 충분한 운동 에너지를 얻은 후에 점차적으로 분자 유도의 속박을 극복하고 저압 진공 챔버로 이탈 한 다음 대기로 배출 한 다음 진공 펌프. 진공 건조는 3 개의 주요 공정을 통과합니다. 첫째, 열 전달 공정 재료는 열원을 통해 열을 흡수하고 내부 습식 함량을 따뜻하게하고 증발시킵니다. 둘째, 물질의 내부 수분의 액체 덩어리 전달 과정에서 물질의 내부 수분이 액체 형태로 표면으로 이동 한 다음 표면의 증발을 완성합니다. 마지막으로, 재료의 표면의 젖은 부분의 기체 이송 공...
    더 읽어보기
  • 파우치 셀 케이스용 알루미늄 라미네이트 필름
    Sep 02 , 2021
    리튬 배터리의 포장 방법은 사용하는 쉘 재질에 따라 다릅니다. 일반적으로 리튬 파우치 배터리만 사용합니다. 알루미늄 라미네이트 필름 및 열 밀봉. 금속 캔 배터리는 일반적으로 레이저 용접으로 밀봉됩니다. 알루미늄 라미네이트 필름 일반적으로 나일론 층, 알루미늄 층, PP 층의 3개의 층이 있습니다. 나일론 층은 알루미늄 라미네이트 필름의 외관을 보장하고 쉘의 손상을 줄이며 리튬 이온 배터리로 제조하기 전에 알루미늄 라미네이트 필름이 변형되지 않도록 하고 공기, 특히 산소가 배터리에 침투하는 것을 방지하고 내부 환경을 유지합니다. 배터리 셀의. 리튬 이온 배터리는 일반적으로 물을 무서워하므로 전극 시트의 수분 함량은 PPM 수준이되어야합니다. Al 층은 물 침투를 방지하는 기능을하는 금속 Al 층으로 구성됩니...
    더 읽어보기
  • 리튬 파우치 셀 케이스 성형 공정
    Oct 11 , 2021
    NS 배터리 셀 파우치 셀 배터리는 고객의 요구에 따라 다양한 크기로 설계할 수 있습니다. 파우치 셀 케이스 크기가 잘 설계되면 알루미늄 라미네이트 필름 형성을 위해 해당 금형을 만들어야합니다. 파우치 셀 케이스 성형 공정은 성형 몰드를 사용하여 다음 그림과 같이 배터리 셀을 수용할 수 있는 알
    더 읽어보기
  • 리튬 이온 파우치 셀 전해질 충전 공정
    Nov 23 , 2021
    피 후 ouch 셀 상단 밀봉 및 측면 밀봉, 배터리 셀의 정렬을 확인하기 위해 X-레이를 수행한 다음 건조를 위해 배터리 셀을 건조실에 넣어야 합니다(건조 오븐을 사용하여 배터리 셀을 건조할 수도 있습니다). 배터리 셀 건조 공정이 완료되면 다음 단계는 전해액 충전 공정 및 1차 밀봉 공정입니다. 이전 기사의 소개를 통해 우리는 배터리 셀이 상단 밀봉 및 측면 밀봉을 완료한 후 한쪽(가스백 측)이 열리는 것을 알고 있습니다. 이 쪽은 전해질 주입용입니다. 1차 밀봉이라고도 하는 사전 밀봉은 전해액 주입 직후에 필요합니다. 1차 밀봉 후 배터리 셀 내부는 외부 환경과 완전히 격리됩니다. 1차 실링의 인캡슐레이션 원리는 상부 및 측면 실링과 동일하며 여기서는 설명하지 않는다. 프로세스는 다음과 같습니다. 전해...
    더 읽어보기
  • 리튬 이온 배터리 파우치 셀 형성 공정
    Nov 26 , 2021
    전해액 충전 및 1차 밀봉이 완료된 후, 먼저 진공 상태 챔버에서 배터리 셀에 전해질 침투가 필요하며, 다른 프로세스에 따라 고온 상태와 상온 상태로 구분됩니다. Cell의 전해액 충진 및 스탠딩 공정이 완료된 후 다음 단계는 형성. 리튬 이온 배터리 형성이란 무엇입니까? 리튬 이온 배터리 형성은 배터리를 전기 화학적으로 활성화시키기 위한 리튬 이온 배터리의 첫 번째 충전 과정을 말합니다. 형성은 음극 표면에 고체 전해질 인터페이스 필름(SEI 필름) 층이 형성되는 것입니다. SEI 막은 고체 전해질의 성질을 가지고 있고 전자 절연체이지만 이 SEI 막은 Li+의 우수한 전도체로서 자유롭게 통과할 수 있다. SEI 필름의 중요한 구성 요소는 Li2CO3, LiF, LiOH, ROCO2Li, ROLi 등입니다...
    더 읽어보기
  • 나트륨 이온 배터리와 리튬 이온 배터리의 차이점
    Dec 24 , 2021
    의 이론적 근거와 배터리 구조 나트륨 이온 배터리(Na 이온 배터리) 리튬 이온 배터리는 매우 유사합니다. 액체 나트륨 이온 배터리(고체 리튬 이온 배터리와 같이 연구 중임)는 양극, 음극, 집전체 , 전해질 및 배터리 분리기. 그 중 전해질과 분리막은 기본적으로 리튬 이온 배터리 시스템을 따릅니다. 알루미늄 호일은 집전체의 양극과 음극 모두에 사용할 수 있지만 구리박은 리튬 이온 배터리의 음극에 필요합니다(나트륨 이온은 양극에서 알루미늄 이온과 반응하지 않기 때문에). 이는 또한 전류 비용을 절감합니다. 수집기. 나트륨 이온과 리튬 이온의 특성 차이로 인해 나트륨 이온의 양극 및 음극 재료는 나트륨 이온 이동에 적합한 재료를 선택해야 하며 이는 나트륨 이온 배터리 기술의 핵심이기도 합니다. 현재 크게 3가...
    더 읽어보기
  • 나트륨 이온 배터리 음극재
    Dec 27 , 2021
    (1) 층상 금속 산화물 층상 금속 산화물은 간단한 제조 방법과 높은 비용량 때문에 연구자들이 선호합니다. 리튬 배터리와 유사하게, 층상 산화물 캐소드 재료도 나트륨 이온 배터리에서 상업적으로 사용하기 위한 유망한 캐소드 재료입니다. (2) 프러시안 블루 프러시안 블루 프레임 구조는 뛰어난 구조적 안정성과 속도 성능으로 나트륨 이온이 빠르게 삽입 및 방출되도록 합니다. 프러시안 블루 소재는 큰 응용 가능성을 보여주지만 상업적 응용에는 여전히 몇 가지 문제가 있습니다. 주된 이유는 결정수 및 공석의 존재가 재료의 특성에 영향을 미치기 때문입니다. 결정수는 나트륨 이온의 확산을 방해하고 물의 분해로 인해 배터리의 전기 화학적 성능이 더욱 저하되고 속도 성능이 저하됩니다. Vacancy는 재료의 전기전도도 저하로...
    더 읽어보기
  • 리튬 이온 배터리 형성 과정
    Mar 21 , 2022
    배터리 제조 후, 내부 양극 및 음극 물질을 활성화하기 위해 일정한 충방전 방식을 통해, 배터리의 충방전 성능과 자가 방전, 저장 및 기타 종합적인 성능을 향상,이 과정을 호출합니다. 형성. 리튬 이온 배터리의 형성 과정은 매우 복잡한 과정,이며 배터리 성능에 영향을 미치는 중요한 과정이기도 합니다, li+가 처음 충전될 때, li+가 처음으로 흑연에 삽입되기 때문에, 전기화학 반응, 첫 번째 충전 과정에서 배터리.에서 발생, 탄소 음극과 전해질, 사이의 상 INTERFACE에 탄소 전극 표면을 덮는 얇은 부동태층이 필연적으로 SEI 필름( 고체 전해질 인터페이스). 형성 원리 tob NEW ENERGY는 512 채널 5V2A,5V3A, 또한 고사양 5V30A 등.과 같은 다양한 사양의 리튬 이온 배터리 성...
    더 읽어보기
  • 리튬이온 파우치 셀 가스 발생 요인
    Apr 15 , 2022
    강철 및 알루미늄 케이스(캔) 리튬 이온 배터리가 폭발적으로 큰 피해를 입었기 때문에, 현재, 주요 포장 재료인 알루미늄 적층 필름이 점차 주류.가 되었습니다. 배터리 케이스(캔) 이점 불리 스틸 캔 리튬 이온 배터리 우수한 물리적 안정성, 압력에 대한 강한 저항 큰 무게, 낮은 안전성, 2차 위험 알루미늄 캔 리튬 이온 배터리 경량, 안전성은 강철 캔 리튬 이온 배터리보다 약간 우수합니다. 높은 비용 및 2차 위험 알루미늄 적층 필름 파우치 셀 가벼운 품질, 저렴한 비용, 높은 안전성 팽창, 압력에 약한 저항 파우치 셀은 알루미늄 적층 필름으로 인해 팽창하기 쉬움, 팽창 가스 발생은 정상 가스 발생과 비정상 가스 발생으로 나눌 수 있습니다. 1. 일반 가스 발생 이는 전지 형성 과정,에서 가스 발생을 수반...
    더 읽어보기
  • 배터리 용량 테스트 및 분류의 원리와 기능
    Jun 07 , 2022
    배터리 용량 테스트 및 분류의 원리와 기능 리튬 이온 배터리 용량 테스트 정렬이란 무엇입니까? 리튬 이온 배터리 용량 테스트 및 분류에 대한 두 가지 설명이 있습니다. 첫 번째 설명: 배터리 용량 정렬 및 성능 필터링. 컴퓨터 관리를 통한 리튬 배터리 용량 정렬을 통해 각 감지 지점의 데이터를 가져와, 배터리 용량의 크기를 분석, 내부 저항 및 기타 데이터, 결정 리튬 배터리의 품질 등급, 이 프로세스는 용량 테스트 및 분류. 리튬 배터리의 첫 번째 용량 테스트 및 분류 후, 일정 기간 동안 방치되어야 함, 일반적으로 15 이상 일. 이 기간 동안, 몇 가지 고유한 품질 문제가 나타납니다. 두 번째 설명: 리튬 배터리의 배치가 만들어진 후, 크기가 같더라도, 배터리의 용량이 달라. 따라서, 배터리는 사양에 ...
    더 읽어보기
  • 리튬 이온 배터리의 사이클링 성능에 영향을 미치는 요인은 무엇입니까?
    Aug 24 , 2022
    재료 재료 선택은 리튬 이온 배터리의 성능에 영향을 미치는 첫 번째 요소입니다. 사이클 성능이 좋지 않은 배터리 재료 를 선택하면 공정이 합리적이고 생산이 완벽하더라도 셀의 사이클을 보장할 수 없습니다. 그리고 더 좋은 재료를 사용하면 후속 생산 과정에서 약간의 문제가 있더라도 사이클 성능이 나쁘지 않을 수 있습니다. 물질적 관점에서 배터리의 사이클링 성능은 전해질과 일치할 때 사이클 성능이 더 나쁜 양극과 음극에 따라 달라집니다. 재료주기 성능이 좋지 않은 경우. 한편, 주기 동안 결정 구조가 너무 빨리 변하여 리튬 이온의 방출 및 수용이 완료되지 않을 수 있습니다. 한편, 활물질과 해당 전해질이 조밀하고 균일한 SEI 필름을 생성하지 못하여 활물질과 전해질 사이의 조기 부반응을 일으켜 전해질 소모가 빨라...
    더 읽어보기
  • 수성 나트륨 이온 배터리용 프러시안 블루 캐소드 재료: 준비 및 전기화학적 성능
    Sep 05 , 2022
    수성 나트륨 이온 배터리용 프러시안 블루 캐소드 재료: 준비 및 전기화학적 성능 저자 : 리용. 수성 나트륨 이온 배터리용 프러시안 블루 음극 재료: 준비 및 전기화학적 성능. Journal of Inorganic Materials[J], 2019, 34(4): 365-372 doi:10.15541/jim20180272 TOB New Energy 는 리튬 이온 배터리 및 나트륨 이온 배터리 등 프 러시안 블루 (PB)는 금속-유기 골격 복합체의 일종으로 수성 나트륨 이온 배터리의 양극 재료로 폭넓은 응용 가능성을 보여줍니다. 이 연구에서는 단일 소스 방법으로 PB 복합 재료를 준비했습니다. 또한 반응 온도, 시간 및 염산 농도가 PB 형태 및 전기화학적 성능에 미치는 영향을 체계적으로 조사하였다. 그 결과 ...
    더 읽어보기
첫 페이지 1 2 3 4 마지막 페이지
[  총  4  페이지]

메시지를 남겨주세요

    당신이 우리의 제품에 관심이 있고 세부 사항을 더 알고 싶은 경우에, 여기에 메시지를 남겨주세요

제품

회사

상단